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CHAPTER

5
Understanding 
and Comparing
Distributions

The Hopkins Memorial Forest is a 2500-acre reserve in Massachusetts,
New York, and Vermont managed by the Williams College Center for En-
vironmental Studies (CES). As part of their mission, CES monitors forest
resources and conditions over the long term. They post daily measure-

ments at their Web site.1 You can go there, download, and analyze data for any
range of days. We’ll focus for now on 1989. As we’ll see, some interesting things
happened that year. 

One of the variables measured in the forest is wind speed. Three remote
anemometers generate far too much data to report, so, as summaries, you’ll find
the minimum, maximum, and average wind speed (in mph) for each day.

Wind is caused as air flows from areas of high pressure to areas of low pres-
sure. Centers of low pressure often accompany storms, so both high winds and
low pressure are associated with some of the fiercest storms. Wind speeds can
vary greatly during a day and from day to day, but if we step back a bit farther,
we can see patterns. By modeling these patterns, we can understand things about
Average Wind Speed that we may not have known.

In Chapter 3 we looked at the association between two categorical variables
using contingency tables and displays. Here we’ll explore different ways of
examining the relationship between two variables when one is quantitative, and
the other is categorical and indicates groups to compare. We are given wind speed
averages for each day of 1989. But we can collect the days together into different
size groups and compare the wind speeds among them. If we consider Time as a
categorical variable in this way, we’ll gain enormous flexibility for our analysis
and for our understanding. We’ll discover new insights as we change the granu-
larity of the grouping variable—from viewing the whole year’s data at one
glance, to comparing seasons, to looking for patterns across months, and, finally,
to looking at the data day by day.

WHO Days during 1989

WHAT Average daily wind
speed (mph), Average
barometric pressure
(mb), Average daily
temperature (deg 
Celsius)

WHEN 1989

WHERE Hopkins Forest, 
in Western 
Massachusetts

WHY Long-term observa-
tions to study ecology
and climate

1 www.williams.edu/CES/hopkins.htm
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The Big Picture
Let’s start with the “big picture.” Here’s a histogram and 5-
number summary of the Average Wind Speed for every day in 1989.
Because of the skewness, we’ll report the median and IQR. We can
see that the distribution of Average Wind Speed is unimodal and
skewed to the right. Median daily wind speed is about 1.90 mph,
and on half of the days, the average wind speed is between 1.15
and 2.93 mph. We also see a rather windy 8.67-mph day. Was that
unusually windy or just the windiest day of the year? To answer
that, we’ll need to work with the summaries a bit more.

2 The axis could also run horizontally.
3 Some computer programs draw wider boxes for larger data sets. That can be useful when
comparing groups.
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FIGURE 5.1
A histogram of daily Average Wind Speed for 1989. It is uni-
modal and skewed to the right, with a possible high outlier.

Boxplots and 5-Number Summaries
Once we have a 5-number summary of a (quantitative) variable, we can display
that information in a boxplot. To make a boxplot of the average wind speeds,
follow these steps:

1. Draw a single vertical axis spanning the extent of the data.2 Draw short horizon-
tal lines at the lower and upper quartiles and at the median. Then connect them
with vertical lines to form a box. The box can have any width that looks OK.3

2. To help us construct the boxplot, we erect “fences” around the main part of the
data. We place the upper fence 1.5 IQRs above the upper quartile and the lower
fence 1.5 IQRs below the lower quartile. For the wind speed data, we compute

and

The fences are just for construction and are not part of the display. We show
them here with dotted lines for illustration. You should never include them in
your boxplot.

3. We use the fences to grow “whiskers.” Draw lines from the ends of the box up
and down to the most extreme data values found within the fences. If a data value
falls outside one of the fences, we do not connect it with a whisker.

4. Finally, we add the outliers by displaying any data values beyond the fences
with special symbols. (We often use a different symbol for “far outliers”—
data values farther than 3 IQRs from the quartiles.) 

What does a boxplot show? The center of a boxplot is (remarkably enough)
a box that shows the middle half of the data, between the quartiles. The height of
the box is equal to the IQR. If the median is roughly centered between the quar-
tiles, then the middle half of the data is roughly symmetric. If the median is not
centered, the distribution is skewed. The whiskers show skewness as well if they
are not roughly the same length. Any outliers are displayed individually, both to
keep them out of the way for judging skewness and to encourage you to give
them special attention. They may be mistakes, or they may be the most interest-
ing cases in your data.

Lowerfence = Q1 - 1.5 IQR = 1.15 - 1.5 * 1.78 = -1.52 mph

Upper fence = Q3 + 1.5 IQR = 2.93 + 1.5 * 1.78 = 5.60 mph
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Boxplots. Watch a boxplot
under construction.

Boxplots and dotplots. Drag data
points around to explore what a
boxplot shows (and doesn’t).
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FIGURE 5.3
Histograms of Average Wind Speed
for days in Spring/Summer (left) and
Fall/Winter (right) show very different
patterns.
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FIGURE 5.2
By turning the boxplot and putting it on
the same scale as the histogram, we can
compare both displays of the daily wind
speeds and see how each represents the
distribution.

For the Hopkins Forest data, the central box contains each day whose Average
Wind Speed is between 1.15 and 2.93 miles per hour (see Figure 5.2). From the
shape of the box, it looks like the central part of the distribution of wind speeds is
roughly symmetric, but the longer upper whisker indicates that the distribution
stretches out at the upper end. We also see a few very windy days. Boxplots are
particularly good at pointing out outliers. These extraordinarily windy days may
deserve more attention. We’ll give them that extra attention shortly. 

The prominent statistician
John W.Tukey, the originator
of the boxplot, was asked by
one of the authors why the
outlier nomination rule cut
at 1.5 IQRs beyond each
quartile. He answerd that 
the reason was that 1 IQR
would be too small and 
2 IQRs would be too large.
That works for us.

Activity: Playing with
Summaries. See how different
summary measures behave as
you place and drag values, and
see how sensitive some statistics
are to individual data values.

Comparing Groups with Histograms
It is almost always more interesting to compare groups. Is it windier in the winter or
the summer? Are any months particularly windy? Are weekends a special problem?
Let’s split the year into two groups: April through September (Spring/Summer) and
October through March (Fall/Winter). To compare the groups, we create two his-
tograms, being careful to use the same scale. Here are displays of the average daily
wind speed for Spring/Summer (on the left) and Fall/Winter (on the right): 

The shapes, centers, and spreads of these two distributions are strikingly differ-
ent. During spring and summer (histogram on the left), the distribution is skewed to
the right. A typical day during these warmer months has an average wind speed of
only 1 to 2 mph, and few have average speeds above 3 mph. In the colder months
(histogram on the right), however, the shape is less strongly skewed and more
spread out. The typical wind speed is higher, and days with average wind speeds
above 3 mph are not unusual. There are several noticeable high values.

Summaries for Average Wind Speed by Season

Group Mean StdDev Median IQR

Fall/Winter 2.71 1.36 2.47 1.87
Spring/Summer 1.56 1.01 1.34 1.32

the shape of a distribution is not
always evident in a boxplot.
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Comparing Groups with Boxplots
Are some months windier than others? Even residents may not have a good idea
of which parts of the year are the most windy. (Do you know for your hometown?)
We’re not interested just in the centers, but also in the spreads. Are wind speeds
equally variable from month to month, or do some months show more variation?

Earlier, we compared histograms of the wind speeds for two halves of the
year. To look for seasonal trends, though, we’ll group the daily observations by
month. Histograms or stem-and-leaf displays are a fine way to look at one distri-
bution or two. But it would be hard to see patterns by comparing 12 histograms.
Boxplots offer an ideal balance of information and simplicity, hiding the details
while displaying the overall summary information. So we often plot them side by
side for groups or categories we wish to compare.

By placing boxplots side by side, we can easily see which groups have higher
medians, which have the greater IQRs, where the central 50% of the data is lo-
cated in each group, and which have the greater overall range. And, when the
boxes are in an order, we can get a general idea of patterns in both the centers and
the spreads. Equally important, we can see past any outliers in making these com-
parisons because they’ve been displayed separately.

Here are boxplots of the Average Daily Wind Speed by month: 

Video: Can Diet Prolong
Life? Here’s a subject that’s been
in the news: Can you live longer
by eating less? (Or would it just
seem longer?) Look at the data in
subsequent activities, and you’ll
find that you can learn a lot by
comparing two groups with
boxplots. 

Comparing groups with stem-and-leaf displaysFOR EXAMPLE

In 2004 the infant death rate in the United States was 6.8 deaths per 1000 live births. The Kaiser
Family Foundation collected data from all 50 states and the District of Columbia, allowing us to look
at different regions of the country. Since there are only 51 data values, a back-to-back stem-and-
leaf plot is an effective display. Here’s one comparing infant death rates in the Northeast and Mid-
west to those in the South and West. In this display the stems run down the middle of the plot, with
the leaves for the two regions to the left or right. Be careful when you read the values on the left:
4|11| means a rate of 11.4 deaths per 1000 live birth for one of the southern or western states.

Question: How do infant death rates compare for these regions?

In general, infant death rates were generally higher for states in the South
and West than in the Northeast and Midwest. The distribution for the
northeastern and midwestern states is roughly uniform, varying from a low
of 4.8 to a high of 8.1 deaths per 1000 live births. Ten southern and west-
ern states had higher infant death rates than any in the Northeast or Midwest, with one state over 11. Rates varied
more widely in the South and West, where the distribution is skewed to the right and possibly bimodal. We should inves-
tigate further to see which states represent the cluster of high death rates.
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North
and Midwest

1 1
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Infant Death Rates (by state) 2004

(4 |11| means 11.4 deaths per 1000 live births)
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✴FIGURE 5.4
Boxplots of the average daily wind
speed for each month show seasonal
patterns in both the centers and
spreads.
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84 CHAPTER 5    Understanding and Comparing Distributions

Here we see that wind speeds tend to decrease in the summer. The months in
which the winds are both strongest and most variable are November through
March. And there was one remarkably windy day in November.

When we looked at a boxplot of wind speeds for the entire year, there were
only 5 outliers. Now, when we group the days by Month, the boxplots display
more days as outliers and call out one in November as a far outlier. The boxplots
show different outliers than before because some days that seemed ordinary
when placed against the entire year’s data looked like outliers for the month that
they’re in. That windy day in July certainly wouldn’t stand out in November or
December, but for July, it was remarkable.

Comparing distributionsFOR EXAMPLE

Roller coasters4 are a thrill ride in many amusement parks worldwide. And thrill seekers want a
coaster that goes fast. There are two main types of roller coasters: those with wooden tracks 
and those with steel tracks. Do they typically run at different speeds? Here are boxplots: 

Question: Compare the speeds of wood and steel roller coasters.

Overall, wooden-track roller coasters are slower than steel-track coasters.
In fact, the fastest half of the steel coasters are faster than three quar-
ters of the wooden coasters. Although the IQRs of the two groups are sim-
ilar, the range of speeds among steel coasters is larger than the range for
wooden coasters. The distribution of speeds of wooden coasters appears
to be roughly symmetric, but the speeds of the steel coasters are skewed to the right, and there
is a high outlier at 120 mph. We should look into why that steel coaster is so fast.

4 See the Roller Coaster Data Base at www.rcdb.com.

Of course, we can compare groups even when they are not in any particular order. Most scientific
studies compare two or more groups. It is almost always a good idea to start an analysis of data
from such studies by comparing boxplots for the groups. Here’s an example:

For her class project, a student compared the efficiency of various coffee containers. For her
study, she decided to try 4 different containers and to test each of them 8 different times. Each
time, she heated water to 180 F, poured it into a container, and sealed it. (We’ll learn the details of
how to set up experiments in Chapter 13.) After 30 minutes, she measured the temperature again
and recorded the difference in temperature. Because these are temperature differences, smaller
differences mean that the liquid stayed hot—just what we would want in a coffee mug.

Question: What can we say about the effectiveness of these four mugs?

°

Comparing GroupsSTEP-BY-STEP EXAMPLE
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40
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Coaster Type
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I want to compare the effectiveness of the dif-
ferent mugs in maintaining temperature. I have
8 measurements of Temperature Change for
each of the mugs.

Ç Quantitative Data Condition: The Temper-
ature Changes are quantitative, with units
of F. Boxplots are appropriate displays 
for comparing the groups. Numerical sum-
maries of each group are appropriate 
as well.

°

Plan State what you want to find out.

Variables Identify the variables and re-
port the W’s.

Be sure to check the appropriate condition.

Mechanics Report the 5-number sum-
maries of the four groups. Including the
IQR is a good idea as well.

Make a picture. Because we want to com-
pare the distributions for four groups,
boxplots are an appropriate choice. 20
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Container

Min Q1 Median Q3 Max IQR

CUPPS 6 F° 6 8.25 14.25 18.50 8.25
Nissan 0 1 2 4.50 7 3.50
SIGG 9 11.50 14.25 21.75 24.50 10.25
Starbucks 6 6.50 8.50 14.25 17.50 7.75

The individual distributions of temperature
changes are all slightly skewed to the high end.
The Nissan cup does the best job of keeping
liquids hot, with a median loss of only 2 F, and
the SIGG cup does the worst, typically losing 
14 F. The difference is large enough to be impor-
tant: A coffee drinker would be likely to notice 
a 14 drop in temperature. And the mugs are
clearly different: 75% of the Nissan tests showed
less heat loss than any of the other mugs in the
study. The IQR of results for the Nissan cup is
also the smallest of these test cups, indicating
that it is a consistent performer.

°

°

°

Conclusion Interpret what the boxplots
and summaries say about the ability of
these mugs to retain heat. Compare the
shapes, centers, and spreads, and note
any outliers.
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86 CHAPTER 5    Understanding and Comparing Distributions

JUST CHECKING
The Bureau of Transportation Statistics of the U.S. Department of Transportation collects and publishes statis-

tics on airline travel (www.transtats.bts.gov). Here are three displays of the % of flights arriving late each month
from 1995 through 2005: 

1. Describe what the histogram says about late arrivals.

2. What does the boxplot of late arrivals suggest that you can’t see in the histogram?

3. Describe the patterns shown in the boxplots by month. At what time of year are flights least likely to be late?
Can you suggest reasons for this pattern? 
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In the last chapter we looked at the performances of fourth-grade students on
an agility test. Now let’s make comparative boxplots for the boys’ scores and
the girls’ scores:

Boys: 22, 17, 18, 29, 22, 22, 23, 24, 23, 17, 21
Girls: 25, 20, 12, 19, 28, 24, 22, 21, 25, 26, 25, 16, 27, 22

Enter these data in L1 (Boys) and L2 (Girls).

Set up STATPLOT’s Plot1 to make a boxplot of the boys’ data:

• Turn the plot On;
• Choose the first boxplot icon (you want your plot to indicate outliers);
• Specify Xlist:L1 and Freq:1, and select the Mark you want the calcu-

lator to use for displaying any outliers.

Use ZoomStat to display the boxplot for Boys. You can now TRACE to see
the statistics in the five-number summary. Try it!

As you did for the boys, set up Plot2 to display the girls’ data. This time
when you use ZoomStat with both plots turned on, the display shows the
parallel boxplots. See the outlier?

This is a great opportunity to practice your “Tell” skills. How do these fourth
graders compare in terms of agility?

Comparing groups with boxplots
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Outliers
When we looked at boxplots for the Average Wind Speed by Month, we noticed that
several days stood out as possible outliers and that one very windy day in No-
vember seemed truly remarkable. What should we do with such outliers?

Cases that stand out from the rest of the data almost always deserve our at-
tention. An outlier is a value that doesn’t fit with the rest of the data, but exactly
how different it should be to be treated specially is a judgment call. Boxplots pro-
vide a rule of thumb to highlight these unusual points, but that rule doesn’t tell
you what to do with them. 

So, what should we do with outliers? The first thing to do is to try to understand
them in the context of the data. A good place to start is with a histogram. His-
tograms show us more detail about a distribution than a boxplot can, so they give
us a better idea of how the outlier fits (or doesn’t fit) in with the rest of the data.

A histogram of the Average Wind Speed in November shows a slightly
skewed main body of data and that very windy day clearly set apart from the
other days. When considering whether a case is an outlier, we often look at
the gap between that case and the rest of the data. A large gap suggests that
the case really is quite different. But a case that just happens to be the largest
or smallest value at the end of a possibly stretched-out tail may be best
thought of as just . . . the largest or smallest value. After all, some case has to
be the largest or smallest.

Some outliers are simply unbelievable. If a class survey includes a stu-
dent who claims to be 170 inches tall (about 14 feet, or 4.3 meters), you can be
pretty sure that’s an error.

Once you’ve identified likely outliers, you should always investigate
them. Some outliers are just errors. A decimal point may have been misplaced,
digits transposed, or digits repeated or omitted. The units may be wrong. (Was
that outlying height reported in centimeters rather than in inches [170 cm =
65 in.]?) Or a number may just have been transcribed incorrectly, perhaps

copying an adjacent value on the original data sheet. If you can identify the cor-
rect value, then you should certainly fix it. One important reason to look into out-
liers is to correct errors in your data.

Many outliers are not wrong; they’re just different. Such cases often repay the
effort to understand them. You can learn more from the extraordinary cases than
from summaries of the overall data set.

What about that windy November day? Was it really that windy, or could
there have been a problem with the anemometers? A quick Internet search for
weather on November 21, 1989, finds that there was a severe storm: 
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FIGURE 5.5
The Average Wind Speed in November is slightly
skewed with a high outlier.

WIND, SNOW, COLD GIVE N.E. A TASTE OF WINTER
Published on November 22, 1989
Author: Andrew Dabilis, Globe Staff

An intense storm roared like the Montreal Express through New England
yesterday, bringing frigid winds of up to 55 m.p.h., 2 feet of snow in some
parts of Vermont and a preview of winter after weeks of mild weather.
Residents throughout the region awoke yesterday to an icy vortex that
lifted an airplane off the runway in Newark and made driving dangerous
in New England because of rapidly shifting winds that seemed to come
from all directions.
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88 CHAPTER 5    Understanding and Comparing Distributions

When we have outliers, we need to decide what to Tell about the data. If we
can correct an error, we’ll just summarize the corrected data (and note the correc-
tion). But if we see no way to correct an outlying value, or if we confirm that it is
correct, our best path is to report summaries and analyses with and without the
outlier. In this way a reader can judge for him- or herself what influence the out-
lier has and decide what to think about the data.

There are two things we should never do with outliers. The first is to silently
leave an outlier in place and proceed as if nothing were unusual. Analyses of
data with outliers are very likely to be influenced by those outliers—sometimes
to a large and misleading degree. The other is to drop an outlier from the analy-
sis without comment just because it’s unusual. If you want to exclude an outlier,
you must discuss your decision and, to the extent you can, justify your decision.

Case Study: Are
passengers or drivers safer in a
crash? Practice the skills of this
chapter by comparing these two
groups.

Checking out the outliersFOR EXAMPLE

Recap: We’ve looked at the speeds of roller coasters and found a difference between steel- and wooden-
track coasters. We also noticed an extraordinary value.

Question: The fastest coaster in this collection turns out to be the “Top Thrill Dragster” at Cedar Point
amusement park. What might make this roller coaster unusual? You’ll have to do some research, but
that’s often what happens with outliers.

The Top Thrill Dragster is easy to find in an Internet search. We learn that it is a “hy-
draulic launch” coaster. That is, it doesn’t get its remarkable speed just from gravity,
but rather from a kick-start by a hydraulic piston. That could make it different from
the other roller coasters.
(You might also discover that it is no longer the fastest roller coaster in the world.)
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Timeplots: Order, Please!
The Hopkins Forest wind speeds are reported as daily averages. Previously, we
grouped the days into months or seasons, but we could look at the wind speed
values day by day. Whenever we have data measured over time, it is a good idea
to look for patterns by plotting the data in time order. Here are the daily average
wind speeds plotted over time: 
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FIGURE 5.6
A timeplot of Average Wind Speed
shows the overall pattern and
changes in variation.
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A display of values against time is sometimes called a timeplot. This timeplot
reflects the pattern that we saw when we plotted the wind speeds by month. But
without the arbitrary divisions between months, we can see a calm period during
the summer, starting around day 200 (the middle of July), when the wind is rela-
tively mild and doesn’t vary greatly from day to day. We can also see that the
wind becomes both more variable and stronger during the early and late parts of
the year.

Looking into the Future
It is always tempting to try to extend what we see in a timeplot into the future.
Sometimes that makes sense. Most likely, the Hopkins Forest climate follows reg-
ular seasonal patterns. It’s probably safe to predict a less windy June next year
and a windier November. But we certainly wouldn’t predict another storm on
November 21.

Other patterns are riskier to extend into the future. If a stock has been ris-
ing, will it continue to go up? No stock has ever increased in value indefinitely,
and no stock analyst has consistently been able to forecast when a stock’s value
will turn around. Stock prices, unemployment rates, and other economic, social,
or psychological concepts are much harder to predict than physical quantities.
The path a ball will follow when thrown from a certain height at a given speed
and direction is well understood. The path interest rates will take is much less
clear. Unless we have strong (nonstatistical) reasons for doing otherwise, we
should resist the temptation to think that any trend we see will continue, even
into the near future.

Statistical models often tempt those who use them to think beyond the data.
We’ll pay close attention later in this book to understanding when, how, and how
much we can justify doing that.

Re-expressing Data: A First Look

Re-expressing to Improve Symmetry
When the data are skewed, it can be hard to summarize them simply with a cen-
ter and spread, and hard to decide whether the most extreme values are outliers
or just part of the stretched-out tail. How can we say anything useful about such
data? The secret is to re-express the data by applying a simple function to each
value.

Many relationships and “laws” in the sciences and social sciences include
functions such as logarithms, square roots, and reciprocals. Similar relationships
often show up in data. Here’s a simple example:

In 1980 large companies’ chief executive officers (CEOs) made, on average,
about 42 times what workers earned. In the next two decades, CEO compensation
soared when compared to the average worker. By 2000 that multiple had jumped5

5 Sources: United for a Fair Economy, Business Week annual CEO pay surveys, Bureau of
Labor Statistics, “Average Weekly Earnings of Production Workers, Total Private Sector.”
Series ID: EEU00500004.
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90 CHAPTER 5    Understanding and Comparing Distributions

to 525. What does the distribution of the compensation of Fortune 500 companies’
CEOs look like? Here’s a histogram and boxplot for 2005 compensation: 

0 10,000,000

Annual Compensation ($)

30,000,000 50,000,000 70,000,000 90,000,000 110,000,000 130,000,000 150,000,000 170,000,000 190,000,000 210,000,000 230,000,000

250

200

150

100

50

# 
of

 C
EO

s

FIGURE 5.7
Compensation paid to CEOs of the Fortune 500 companies 
in 2005. The distribution seems to have outliers. But
maybe it just has a long tail on the right.

We have 500 CEOs and about 48 possible histogram bins, most of which are
empty—but don’t miss the tiny bars straggling out to the right. The boxplot indi-
cates that some CEOs received extraordinarily high compensations, while the ma-
jority received relatively “little.” But look at the values of the bins. The first bin,
with about half the CEOs, covers incomes from $0 to $5,000,000. Imagine receiving
a salary survey with these categories:

What is your income?
a) $0 to $5,000,000
b) $5,000,001 to $10,000,000
c) $10,000,001 to $15,000,000
d) More than $15,000,000

The reason that the histogram seems to leave so much of the area blank is that
the salaries are spread all along the axis from about $15,000,000 to $240,000,000.
After $50,000,000 there are so few for each bin that it’s very hard to see the tiny
bars. What we can see from this histogram and boxplot is that this distribution is
highly skewed to the right.

It can be hard to decide what we mean by the “center” of a skewed distribution,
so it’s hard to pick a typical value to summarize the distribution. What would you
say was a typical CEO total compensation? The mean value is $10,307,000, while the
median is “only” $4,700,000. Each tells us something different about the data.

One approach is to re-express, or transform, the data by applying a simple
function to make the skewed distribution more symmetric. For example, we could
take the square root or logarithm of each compensation value. Taking logs works
pretty well for the CEO compensations, as you can see: 

25 

50 

100 

75 

125 

5 5.5 6.5 7.5 8.5 6 7 8 

# 
of

 C
EO

s 

log Annual Compensation 

FIGURE 5.8
The logarithms of 2005 CEO compensations
are much more nearly symmetric.
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Re-expressing to Equalize Spread Across Groups
Researchers measured the concentration (nanograms per milliliter) of cotinine in
the blood of three groups of people: nonsmokers who have not been exposed to
smoke, nonsmokers who have been exposed to smoke (ETS), and smokers. Coti-
nine is left in the blood when the body metabolizes nicotine, so this measure gives
a direct measurement of the effect of passive smoke exposure. The boxplots of the
cotinine levels of the three groups tell us that the smokers have higher cotinine
levels, but if we want to compare the levels of the passive smokers to those of the
nonsmokers, we’re in trouble, because on this scale, the cotinine levels for both
nonsmoking groups are too low to be seen. 

Re-expressing can help alleviate the problem of comparing groups that have
very different spreads. For measurements like the cotinine data, whose values
can’t be negative and whose distributions are skewed to the high end, a good first
guess at a re-expression is the logarithm.

After taking logs, we can compare the groups and see that the nonsmokers
exposed to environmental smoke (the ETS group) do show increased levels of
(log) cotinine, although not the high levels found in the blood of smokers.

Notice that the same re-expression has also improved the symmetry of the co-
tinine distribution for smokers and pulled in most of the apparent outliers in all
of the groups. It is not unusual for a re-expression that improves one aspect of
data to improve others as well. We’ll talk about other ways to re-express data as
the need arises throughout the book. We’ll explore some common re-expressions
more thoroughly in Chapter 10.

Re-expressing Data: A First Look 91

The histogram of the logs of the total CEO compensations is much more
nearly symmetric, so we can see that a typical log compensation is between 6,
which corresponds to $1,000,000, and 7, corresponding to $10,000,000. And it’s
easier to talk about a typical value for the logs. The mean log compensation is
6.73, while the median is 6.67. (That’s $5,370,317 and $4,677,351, respectively.) No-
tice that nearly all the values are between 6.0 and 8.0—in other words, between
$1,000,000 and $100,000,000 a year, but who’s counting?

Against the background of a generally symmetric main body of data, it’s eas-
ier to decide whether the largest compensations are outliers. In fact, the three most
highly compensated CEOs are identified as outliers by the boxplot rule of thumb
even after this re-expression. It’s perhaps impressive to be an outlier CEO in an-
nual compensation. It’s even more impressive to be an outlier in the log scale!

Dealing with logarithms You have probably learned about logs in math
courses and seen them in psychology or science classes. In this book, we use
them only for making data behave better. Base 10 logs are the easiest to under-
stand, but natural logs are often used as well. (Either one is fine.) You can think
of base 10 logs as roughly one less than the number of digits you need to write
the number. So 100, which is the smallest number to require 3 digits, has a log10
of 2. And 1000 has a log10 of 3. The log10 of 500 is between 2 and 3, but you’d
need a calculator to find that it’s approximately 2.7. All salaries of “six figures”
have log10 between 5 and 6. Logs are incredibly useful for making skewed data
more symmetric. But don’t worry—nobody does logs without technology and nei-
ther should you. Often, remaking a histogram or other display of the data is as
easy as pushing another button.
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FIGURE 5.9
Cotinine levels (nanograms per milliliter)
for three groups with different exposures
to tobacco smoke. Can you compare the
ETS (exposed to smoke) and No-ETS
groups?

FIGURE 5.10
Blood cotinine levels after taking logs.
What a difference a log makes!
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92 CHAPTER 5    Understanding and Comparing Distributions

WHAT CAN GO WRONG?
u Avoid inconsistent scales. Parts of displays should be mutually consistent—no fair

changing scales in the middle or plotting two variables on different scales but on
the same display. When comparing two groups, be sure to compare them on the
same scale.

u Label clearly. Variables should be identified clearly and axes
labeled so a reader knows what the plot displays.

Here’s a remarkable example of a plot gone wrong. It illus-
trated a news story about rising college costs. It uses time-
plots, but it gives a misleading impression. First think
about the story you’re being told by this display. Then try
to figure out what has gone wrong.

What’s wrong? Just about everything.

1 The horizontal scales are inconsistent. Both lines show
trends over time, but exactly for what years? The tuition
sequence starts in 1965, but rankings are graphed from
1989. Plotting them on the same (invisible) scale makes
it seem that they’re for the same years.

1 The vertical axis isn’t labeled. That hides the fact that it’s
inconsistent. Does it graph dollars (of tuition) or rank-
ing (of Cornell University)?

This display violates three of the rules. And it’s even
worse than that: It violates a rule that we didn’t even bother
to mention.

1 The two inconsistent scales for the vertical axis don’t
point in the same direction! The line for Cornell’s rank
shows that it has “plummeted” from 15th place to 6th
place in academic rank. Most of us think that’s an
improvement, but that’s not the message of this graph.

u Beware of outliers. If the data have outliers and you can cor-
rect them, you should do so. If they are clearly wrong or
impossible, you should remove them and report on them.
Otherwise, consider summarizing the data both with and
without the outliers.

CONNECTIONS
We discussed the value of summarizing a distribution with shape, center, and spread in Chapter 4,
and we developed several ways to measure these attributes. Now we’ve seen the value of compar-
ing distributions for different groups and of looking at patterns in a quantitative variable measured
over time. Although it can be interesting to summarize a single variable for a single group, it is al-
most always more interesting to compare groups and look for patterns across several groups and
over time. We’ll continue to make comparisons like these throughout the rest of our work.
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What Have We Learned? 93

WHAT HAVE WE LEARNED?

u We’ve learned the value of comparing groups and looking for patterns among groups and over time.
u We’ve seen that boxplots are very effective for comparing groups graphically. When we compare

groups, we discuss their shape, center, and spreads, and any unusual features.
u We’ve experienced the value of identifying and investigating outliers. And we’ve seen that when

we group data in different ways, it can allow different cases to emerge as possible outliers.
u We’ve graphed data that have been measured over time against a time axis and looked for long-

term trends.

Terms
Boxplot 81. A boxplot displays the 5-number summary as a central box with whiskers that extend to the non-

outlying data values. Boxplots are particularly effective for comparing groups and for displaying outliers.

Outlier 81, 87. Any point more than 1.5 IQR from either end of the box in a boxplot is nominated as an
outlier.

Far Outlier 81. If a point is more than 3.0 IQR from either end of the box in a boxplot, it is nominated as a far
outlier.

Comparing distributions 82. When comparing the distributions of several groups using histograms or stem-and-leaf displays,
consider their:
u Shape
u Center
u Spread

Comparing boxplots 83. When comparing groups with boxplots:
u Compare the shapes. Do the boxes look symmetric or skewed? Are there differences between groups?
u Compare the medians. Which group has the higher center? Is there any pattern to the medians?
u Compare the IQRs. Which group is more spread out? Is there any pattern to how the IQRs change?
u Using the IQRs as a background measure of variation, do the medians seem to be different, or

do they just vary much as you’d expect from the overall variation?
u Check for possible outliers. Identify them if you can and discuss why they might be unusual. Of

course, correct them if you find that they are errors.

Timeplot 88. A timeplot displays data that change over time. Often, successive values are connected with
lines to show trends more clearly. Sometimes a smooth curve is added to the plot to help show long-
term patterns and trends.

Skills
u Be able to select a suitable display for comparing groups. Understand that histograms show dis-

tributions well, but are difficult to use when comparing more than two or three groups. Boxplots
are more effective for comparing several groups, in part because they show much less informa-
tion about the distribution of each group.

u Understand that how you group data can affect what kinds of patterns and relationships you are
likely to see. Know how to select groupings to show the information that is important for your
analysis.

u Be aware of the effects of skewness and outliers on measures of center and spread. Know how
to select appropriate measures for comparing groups based on their displayed distributions.

u Understand that outliers can emerge at different groupings of data and that, whatever their
source, they deserve special attention.

u Recognize when it is appropriate to make a timeplot.
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u Know how to make side-by-side histograms on comparable scales to compare the distributions
of two groups.

u Know how to make side-by-side boxplots to compare the distributions of two or more groups.

u Know how to describe differences among groups in terms of patterns and changes in their cen-
ter, spread, shape, and unusual values.

u Know how to make a timeplot of data that have been measured over time.

u Know how to compare the distributions of two or more groups by comparing their shapes, cen-
ters, and spreads. Be prepared to explain your choice of measures of center and spread for com-
paring the groups.

u Be able to describe trends and patterns in the centers and spreads of groups—especially if there
is a natural order to the groups, such as a time order.

u Be prepared to discuss patterns in a timeplot in terms of both the general trend of the data and
the changes in how spread out the pattern is.

u Be cautious about assuming that trends over time will continue into the future.

u Be able to describe the distribution of a quantitative variable in terms of its shape, center, and spread.

u Be able to describe any anomalies or extraordinary features revealed by the display of a variable.

u Know how to compare the distributions of two or more groups by comparing their shapes, cen-
ters, and spreads.

u Know how to describe patterns over time shown in a timeplot.

u Be able to discuss any outliers in the data, noting how they deviate from the overall pattern of
the data.
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COMPARING DISTRIBUTIONS ON THE COMPUTER

Most programs for displaying and analyzing data can display plots to compare the distributions of different
groups. Typically these are boxplots displayed side-by-side.
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Side-by-side boxplots
should be on the same
y-axis scale so they
can be compared.

Some programs offer 
a graphical way to assess 
how much the medians
differ by drawing a band
around the median or by 
“notching” the boxes.

Boxes are typically labeled with a group name.
Often they are placed in alphabetical order by
group name—not the most useful order.
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